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Proliferation Monitoring
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• Non-proliferation goal: 
monitor manufacturing and 
testing processes that might 
present a proliferation risk.

• Problem: data collected from 
monitoring systems does not 
yield direct knowledge of the 
activity underway.
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Proliferation Monitoring Challenges 

2/8/2021Los Alamos National Laboratory

• Goal: develop a statistical model that combines
– data observed from the process

– domain knowledge about the process

• This model should describe
– process of interest (unobserved)

– process data (observed)

– relationship between the process and the data
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Simple HMM Example
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Simple Weather HMM



HMM Data Stream
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HMM Parameters
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• Initial State Probabilities: 𝝅𝝅 = (𝜋𝜋1, … ,𝜋𝜋𝑁𝑁), 𝜋𝜋𝑖𝑖 = 𝑃𝑃 𝑋𝑋1 = 𝑖𝑖

• Observation Probabilities: 𝐵𝐵 =
𝑏𝑏11 ⋯ 𝑏𝑏1𝑝𝑝
⋮ ⋱ ⋮
𝑏𝑏𝑁𝑁𝑁 ⋯ 𝑏𝑏𝑁𝑁𝑁𝑁

, 𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑃𝑃 𝑂𝑂𝑡𝑡 = 𝑗𝑗 𝑋𝑋𝑡𝑡 = 𝑖𝑖 , 

𝑖𝑖 = 1, … ,𝑁𝑁, 𝑗𝑗 = 1, … ,𝑝𝑝, and 𝑡𝑡 = 1, … ,𝑛𝑛.

• Transition Probabilities: 𝐴𝐴 =
𝑎𝑎11 ⋯ 𝑎𝑎1𝑁𝑁
⋮ ⋱ ⋮

𝑎𝑎𝑁𝑁𝑁 ⋯ 𝑎𝑎𝑁𝑁𝑁𝑁
, 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑃𝑃 𝑋𝑋𝑡𝑡 = 𝑗𝑗 𝑋𝑋𝑡𝑡−1 = 𝑖𝑖 , 

𝑖𝑖, 𝑗𝑗 = 1, … ,𝑁𝑁, and 𝑡𝑡 = 1, … ,𝑛𝑛.
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HMM Inference
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• The HMM can be used to 
compute 

𝛾𝛾𝑡𝑡 𝑖𝑖 = P(𝑋𝑋𝑡𝑡 = 𝑖𝑖|𝑶𝑶, 𝝀𝝀),

where 𝝀𝝀=(A, B, 𝝅𝝅) and 𝑶𝑶 =
(𝑂𝑂1, … ,𝑂𝑂𝑛𝑛).  

• Takeaway: Infer most likely 
activity at any given time.

7



Dry Alluvium Geology (DAG) Test Case Study
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• Case study: Dry Alluvium Geology 
(DAG) test, an explosive test that 
was conducted at the Nevada 
National Security Site. 

• Observation data: equipment 
(cranes, forklifts, etc.) in use at 
several evenly spaced time points. 
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Domain Awareness: Parameterizing DAG HMM

2/8/2021Los Alamos National Laboratory

• How do we incorporate expert knowledge 
to make our model domain aware?

• Discrete even simulator:
– a process model built by experts

– used to simulate DAG process runs

– use runs to estimate observation 
probabilities and average activity completion 
times

– transition probabilities can be derived from 
the average activity completion times
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DAG HMM, cont. 
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Determining the Most Likely Current Activity
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Initial observation sequence: (14T Crane/Old Glory, 7T Forklift, 7T 
Forklift, 14T Crane/Old Glory, 14T Crane/Old Glory)
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Distribution over process activities after the final observation



Determining the Most Likely Current Activity (Cont.)
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Replace last two observations with 14T Crane, which is indicative of the 
“install initiator” activity. Observation Sequence: (14T Crane/Old Glory, 
7T Forklift, 7T Forklift, 14T Crane, 14T Crane)
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Distribution over process activities after the final observation



Determining the Most Likely Current Activity (Cont.)
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Longer observation sequence with more uncertainty: (14T Crane/Old 
Glory, 7T Forklift, 7T Forklift, 14T Crane/Old Glory, 14T Crane/Old 
Glory, 14T Crane/Old Glory, 7T Forklift, 7T Forklift)
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Distribution over process activities after the final observation



Other HMM capabilities
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The HMM can also 

– determine the most likely sequence of activities corresponding to a 
sequence of observations

– predict when the process started and when the process will end

– use observed data to update model parameters and quantify parameter 
uncertainty
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Next Steps
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Next step: Determine what process from a set of processes most likely 
generated the observed data. 
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Process 1 (ℳ = 1) Process 2 (ℳ = 2)

Observations (𝑶𝑶)

We compute 𝑃𝑃(ℳ = 1| 𝑶𝑶) and 𝑃𝑃(ℳ = 2| 𝑶𝑶) and compare.



Thank you for your attention!
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